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Abstract-A nonlinear finite element procedure is developed which incorporates a thermo­
dynamically derived constitutive law for shape memory alloy material behavior. The constitutive
equations include the necessary internal variables to account for the material transformations and
are utilized in a one-dimensional finite element procedure that captures the unique shape memory
alloy responses of pseudoelasticity and of the shape memory effect at all temperatures, stress levels
and loading conditions. Detailed material properties for the alloy used are necessary for the analysis.
The solution of the geometrically and physically nonlinear problem is achieved by application of a
Newton's method in which a sequence of linear problems is numerically solved. Due to consistent
linearization. a quadratic rate of convergence is obtained.

Several test cases are presented to illustrate the potential of the finite element procedure. Cases
simulating the stress-strain behavior ofa bar of shape memory alloy under simple uniaxial loading
as well as restrained recovery responses at different temperatures compare weIl with experimental
and analytical results. Two further generalized applications are examined: the use of a shape
memory alloy ring as a pipe connector and eigenfrequency tuning of a composite beam with
embedded shape memory wires. The results of these analyses correlate weIl with analytical results
and the methodology for use of the finite element procedure in general cases is demonstrated. The
finite element procedure is thus shown to be a powerful tool for studying various applications of
shape memory aIloys.

INTRODUCTION

Shape memory alloys (SMA) materials have the unusual material property of being able
to sustain and recover large strains (of the order of 10%) without inducing irreversible
plastic deformation and to "remember" a previous configuration and return to it with a
temperature change. These interesting material characteristics arise due to distinctive inter­
nal crystalline transformations with temperature and applied stress (Delaey et ai., 1974;
Perkins et al., 1976; Funakubo, 1987; Wayman and Duerig, 1990). The growing global
interest in smart material and smart structure technology in particular has prompted an
increasing number of investigations of SMAs in the past decade. The result of this research
has been increasingly detailed information regarding the crystalline structure of SMA
materials, a greater understanding ofmacroscopic SMA material behavior, the development
of new alloys and processing techniques, and a dramatic increase in the number of appli­
cations studied, which now span a wide range of products and devices. The most established
commercial application of SMAs, that of connectors for hydraulic tubing in aircraft, is
currently being overshadowed by the incorporation of SMAs into critical roles in a large
array of applications including active vibration control of structures, heat engines, ortho­
dontic wire and automatic switches in household appliances (Banks and Weres, 1976;
Funakubo, 1987; Rogers et al., 1989; Falcioni, 1992).

One advantage of shape memory alloys over other types of mechanical or electrical
devices is that their physical configuration can be easily, precisely and repeatedly controlled
by often small temperature changes. In some applications, where temperature change is in
itself the motivation for movement of a mechanical device, the SMAs can be designed such
that no power source is needed to activate their motion. In other cases, a single or series of
SMA wires can easily and inexpensively be given a small temperature change which initiates
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a phase transformation and consequently results in the desired motion and/or stress. Their
ability to achieve large strains near instantaneously enables the design of structures capable
of extremely large, recoverable deflections. In addition, shape memory alloys are relatively
lightweight, biocompatible, easy to manufacture and have a high force to weight ratio
(Wayman, 1980).

Given the variety of potential uses for SMAs and the high interest in developing
new applications, the ability to accurately model and analyse structures containing SMA
components via a finite element procedure is extremely attractive. The authors are unaware
of any existing finite element analyses capable of addressing shape memory behavior. The
incorporation of the SMA finite element procedure into the design stages of new products
could reduce development times and costs dramatically. Since the properties ofa particular
alloy can be easily and drastically altered in the manufacturing process, the properties of the
SMA component in a given design can be varied systematically in the finite element analysis
before production. This optimization procedure will enable use of shape memory alloy
components with specifically tailored properties that will realize their full potential in each
individual application.

Due to the nature of the internal crystalline transformations, shape memory alloys are
best utilized in an essentially one-dimensional manner, that is, in applications in which the
primary stress and strain directions for the SMA component lie always on a single axis.
Consequently, the current research and available data on SMAs is primarily one-dimen­
sional in nature and here a one-dimensional finite element procedure is developed. The
study of SMA applications with the finite element analysis is not so strictly limited: only
the function of the SMA component itself must be predominantly one-dimensional. Thus,
the finite element procedure results in models that are highly accurate for many systems
incorporating SMAs.

In this work, first the physical basis of SMA behavior is outlined and a general one­
dimensional constitutive law representing this behavior is reviewed. The weak form of the
momentum balance for static boundary value problems and its linearization are summarized
and then the derivation of the tangent operator in a rigorous linearization of the SMA
constitutive law is shown. This method preserves a quadratic rate of convergence in the
iterative solution algorithm which is based on Newton's method. A discussion of the
possibilities and requirements of the finite element procedure follows and several simple
examples of the response of the shape memory material alone are presented, the results of
which correlate well with experimental and analytical results. A demonstration of a more
complex application, a SMA pipe connector, is also given. Finally, a method by which the
one-dimensional SMA finite element for shape memory alloy components can be linked to
two dimensional structural problems is demonstrated and discussed via an example of a
composite beam with embedded SMA wires. In all cases, experimental, analytical and
calculated results are in good agreement.

REVIEW OF SMA CONSTITUTIVE BEHAVIOR

In this section the physical processes behind shape memory behavior are sketched
briefly. The major effects are explained in an attempt to give a framework, motivation and
context for the remainder of the paper, but for more complete discourse regarding the
topics covered, please refer to the relevant work cited.

The special mechanical properties of shape memory alloys depend upon internal
crystalline transformations as functions of stress, temperature and history of the material.
At high temperatures under stress-free conditions, a SMA exists in the parent phase
(austenite) and when cooled the material undergoes a transformation to the low temperature
phase (martensite). In the stress-free state a SMA material can be considered to have four
transition temperatures, designated as M r, M., A., Ar: martensite finish, martensite start,
austenite start, austenite finish. The phase changes occur between the respective start and
finish temperatures and for clarity in this paper we restrict ourselves to examining the
situation in which Mr < Ms < As < Ar. Note that a change of temperature, T, within the
range Ms < T < As induces no phase changes and both martensite and austenite can coexist
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within Me < T < Ae. The formation of the martensite phase from the parent phase under
zero stress is a self-accommodating transformation in which multiple twins and variants of
martensite are formed and there is no volume change or global strain. The martensite
variants formed are all crystallographically and energetically equivalent in the absence of
stress, differing only in orientation, and are distributed evenly throughout the material.
The ability of SMAs to achieve large reversible strains derives directly from the self­
accommodating nature of this transformation (Warlimont et al., 1974; Funakubo, 1987;
Wayman and Duerig, 1990).

When unidirectional stress is applied to the SMA material, there is a critical value,
dependent upon temperature, at which the martensite variants begin a "detwinning" process
that results ultimately in the material consisting of a single variant of martensite aligned
with the axis of loading. Additionally, for material in the austenite phase prior to loading,
there is likewise a critical stress value, dependent upon temperature, at which the austenite
undergoes a crystalline transformation to martensite and in fact, because of the presence
of stress, to a single variant of detwinned martensite. In the transformation process to
detwinned martensite with the application ofload, the stress raises only slightly and a large,
apparently plastic strain is achieved. If the material temperature is above Ar, this large
strain will be recovered by unloading in a characteristic hysteresis loop since the martensite
is unstable at such temperatures without stress; this overall loading and unloading effect is
termed pseudoelasticity. If the material temperature is below A.. a large residual strain
remains after unloading, but may be recovered by heating the material above the austenite
finish temperature; this behavior is generally termed the shape memory effect and a sche­
matic of the detwinning process is shown in Fig. 1. (Also see Fig. 2, illustrating the critical
stresses as functions of temperature, and Fig. 3 in the Discussion Section which depicts
typical stress-strain curves of SMA materials at various temperatures.)

Constitutive relations
This past decade has seen the development of a number of approaches and techniques

for describing shape memory alloy constitutive behavior (Falk, 1980, 1983; Tanaka, 1986;
McNichols and Cory, 1987; Achenbach, 1989; Liang and Rogers, 1990; Brinson, 1992).
For these methods to be readily useful in numerical analysis, the material behavior must
not only be accurately described in mathematical form but also in a form that is amenable
to its inclusion in numerical procedures. For this study the constitutive relations developed
by Brinson (1992,1993), based on previous work by Liang (Liang, 1990; Liang and Rogers,
1990) and Tanaka (Tanaka and Nagaki, 1982; Tanaka and Iwasaki, 1985; Tanaka, 1986)
are utilized. This constitutive description is derived on a thermomechanical basis, has a
relatively simple mathematical expression and includes only quantifiable engineering vari­
ables and material parameters in its expression. The latter is important since a major
drawback to many of the constitutive relations previously developed is that they directly
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Fig. 1. Schematic of detwinning and phase transfonnation. In (a) twinned martensite, in (b) and
(c) detwinned martensite, in (d) austenite.
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include variables that are not easily quantified for standard solid mechanics applications,
such as free energy.

Here we briefly review the development of the constitutive law which will be used in
the finite element analysis. Based upon energy balance equations, a basic differential form
of the SMA constitutive law can be derived (Tanaka, 1986; Brinson, 1993) as

dS = D(E,~, T)dE+n(E,~, T)d~s+0(E,~, T)dT, (1)

where S is the second Piola-Kirchhoff stress, E is the Green strain and ~ is an internal
variable representing the stage of the transformation. The function D(E,~, T) represents
the modulus of the SMA material, n(E,~, T) is considered the "transformation tensor",
and 0(E,~, T) is related to the thermal coefficient of expansion for the SMA material. The
martensite fraction, ~, is further defined by

(2)

where ~T represents the fraction of the material that is purely temperature-induced martensite
with multiple variants and ~s denotes the fraction of the material that has been transformed,
or oriented, by stress into a single martensite variant.

In general, the Young's modulus of a SMA is a function of the martensite fraction of
the material, with the austenitic modulus being approximately three times larger than the
martensitic modulus. To account for this functionality, here the modulus is chosen to be a
simple linear function of the martensite fraction

(3)

where Dm is the modulus value for the SMA as 100% martensite (twinned or detwinned)
and Da is the modulus value for the SMA as 100% austenite. Regarding the transformation
tensor, in a constitutive derivation of (1) with constant material functions, a relationship
between the modulus and n is enforced by applying the material restriction of maximum
residual strain. The maximum residual strain, CL, of a SMA is a material constant and can
be obtained experimentally by converting all the material to detwinned martensite (to
~s = I) and then unloadingata temperature less thanA•. Using the relationship for constant
material functions, it can also be shown (Brinson, 1993) that the transformation tensor as
a function of ~ is intimately related to the modulus function and can be expressed as

(4)

Thus the transformation tensor is not an independent material constant. The material
function 0(E,~, T) is generally assumed to remain constant due to its necessarily relatively
small value [five orders of magnitude less than D(e)].

Given the assumption that the material parameters are linear in ~, reasonable for a
majority of shape memory alloys, the constitutive law can be derived to be

(5)

where (So, Eo, ~o, ~so, To) represent the initial state (or initial conditions) of the material.
Note that although eqn (5) is valid for a wide range of shape memory alloys, if the material
properties for a particular SMA are known to be more general functions of the martensite
fraction or are functions of the other independent variables, then eqn (5) must be rederived
from the basic differential form using the methodology previously discussed (Brinson,
1993).

Transformation kinetics
In addition to the direct expression of the constitutive law, since the martensite fraction

depends on stress and temperature, a set of equations describing this relationship must be
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Fig. 2. Critical stresses for transformation or martensite twin conversion as functions oftemperature.
Plasticity region indicated.

coupled with eqn (5) in order to have a complete set of governing equations for shape
memory alloy behavior. The phase transformation between austenite and martensite is
controlled by chemical free energy as the driving force and a thorough development of the
theory of transformation kinetics can be found in the literature (Warlimont et al., 1974;
Funakubo, 1987) and is not presented here. An empirically based cosine model to represent
the martensite fraction as a function of stress and temperature during transformation has
been developed (Liang and Rogers, 1990) and then further modified to be compatible with
eqns (2) and (5) and to capture shape memory behavior at all temperatures (Brinson, 1993).
For completeness, these equations are repeated here. In conjunction with Fig. 2, illustrating
the critical transformation stress for crystalline transformations, expressions for the mar­
tensite fraction are as follows:

Conversion to detwinned martensite

for T > Ms and O"~r+CM(T-Ms) < S < O"~r +CM(T-Ms):

where,

1- eso {1t cr } 1+ eso
~s =-2-cOS O"~r_O"~r(S-O"r -CM(T-Ms)) +-2-'

~TO
~T = ~TO- l-eso (~s-~so),

for T < Msand O"~r < S < O"'j' :

1- ~so {1t cr} 1+ ~so
es = -2- cos O"~r _ O"~r (S- O"r) +-2-'

if Mr< T< Msand T< To,

else,

AT~ = O.

(6a)

(6b)

(6c)

(6d)

(6e)



3266 L. C. BRINSON and R. LAMMERING

Conversion to austenite
For T> As and CA(T-Ar) < S < CA(T-As):

~so
~s = ~so- ~(~o-~),

~T = ~TO- ~TOO (~o-~).

(7a)

(7b)

(7c)

The parameters aM and aA are defined by

(8)

The constants CM and CA are material properties which describe the relationship of tem~
perature and the critical stress to induce transformation, (Terit' as illustrated in Fig. 2. Note
that above the M s temperature, the value ofthe stress necessary to achieve transformation to
detwinned martensite (as well as the stress below which martensite transforms to austenite)
increases with temperature as is physically intuitive. The critical stress values below M, are
taken to be constant in this model and are denoted by (T~r and o1r for the critical stresses at
the start and finish of the conversion of the martensitic variants. Sufficient experimental
evidence is not available to distinguish between the critical stresses for transformation of
austenite to martensite and the critical stresses for conversion ofmartensite twins at a given
temperature. Since the stress-strain curves ofshape memory alloys do not generally exhibit
two distinct transformation regions, it is reasonable to assume that the transformation and
conversion stresses are identical for the purposes of this paper.

ANALYTICAL AND NUMERICAL FORMULAnON

The derivation and description of the equations necessary for the numerical study of
SMAs is divided into three sections. The first section presents the linearization of the weak
form of the momentum balance equation as applied generally to three-dimensional solid
mechanics problems, leaving the constitutive behavior as yet unspecified. In the second
section the consistent linearization of the shape memory alloy constitutive behavior rep­
resented by eqns (5)-(7) is performed one~dimensionally,but allowing the material to retain
orientation in three-dimensional space. The third section describes the actual implemen­
tation of the previous linearization techniques in a finite element procedure for three­
dimensional truss elements of shape memory alloys.

Linearization of the weak form ofmomentum balance
In addition to the constitutive relations, the momentum balance equations and suitable

boundary conditions must be considered for the eventual numerical study ofshape memory
alloy behavior. Using the principles of virtual displacement, a weak formulation of the
resulting boundary value problem in the reference configuration can be given by

where x is the current position vector in a rectangular Cartesian coordinate system, P
denotes the first Piola-Kirchhoffstress tensor and 11 the usual vector ofvirtual displacements
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for a body of volume V. The density of the body in the reference configuration is Po, Pob
are body forces and PoX the inertial forces per unit volume. External conservative forces i
are applied to the surface area of the body, A.

Due to the implementation of the SMA constitutive law, and because of the large
strains achieved in normal use of SMAs, eqn (9) becomes nonlinear in the displacements.
An iterative solution technique based on Newton's method is used in order to preserve
quadratic rate of convergence. This algorithm makes use of the expansion of the nonlinear
equations in a Taylor series at the location of a given approximation. The procedure for
linearizing the equations ofcontinuum mechanics is comprehensively described in Marsden
and Hughes (1983) and Hughes and Pister (1978). At a known configuration, X, the
linearization of the nonlinear function, G(x, ,.,), is given by

(10)

where x = x + u and the operator ~ {G} .u is the derivative of G at x in the direction of u
and is obtained by

- oG(x,,.,) d {_ }
~{G}'u = ax ·u = de G(x+w,,.,) 1.=0' (11)

Rigorous linearization of the weak formulation of the momentum balance equation results
in (Wriggers, 1988)

G(x,,.,) = G(x,,.,) + Iv Grad uS(x) . Grad ,., dV+ Iv F(x, l1)[~{S(X)} ·u]· Grad 11 dV.

(12)

Here, F denotes the deformation gradient and S is again the second Piola-Kirchhoff stress.
The linearization of S is calculated in the next section with respect to the constitutive
relations ofshape memory alloys. In a finite element formulation, the first integral expression
of eqn (12) results in the initial stress matrix, the second includes the linear stiffness matrix
and the initial displacement matrix. Newton's algorithm is obtained when eqn (10) is set to
zero and the deformation increment is calculated by

~{G(x,,.,)}·u = -G(X,l1). (13)

Linearization of the 8MA constitutive law
The linearization procedure applied to the momentum balance equation in the previous

section is now used for the calculation of the linearized SMA constitutive law. With regard
to the truss application, the generalized three-dimensional notation is now reduced to one­
dimension, the x-direction representing the material direction, with the allowance that the
one-dimensional material body has a location and orientation in three-dimensional space.
Splitting eqn (5) into constant and nonconstant terms, one obtains

(14)

where the term K ocontains the lumped contributions of the constants,

(15)

Note that the temperature is assumed to be constant for each element in the material in
this formulation and heat transfer effects are not considered. Given the expression (14) for
the constitutive relation, the substitution can be made directly in eqn (12) in the term for
the directional derivative of the second Piola-Kirchhoff stress. Up until this point, there
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need be no change in the derivation procedure. Examining this derivative term alone, one
obtains

'@{S(X)}'u = :e {S(x+eu)}ls=o

d
= de {D(~(x+eu»{E(x+eu)-eL~S(x+eu)} +Ko}ls=o, (16)

Applying the chain rule and simplifying results in

d d
de {S(x+.eu)}ls=o = {E(x)-eL~S(x)} de {D(~(x+eu»}ls=o

d d
-8LD(~(x» de gs(X+8U)} o+D(~(x» de {E(x+eu)}ls=o, (17)

The contributions from the first three terms in eqn (17) are considered separately here and,
moreover, the first two terms must be considered individually for each of the separate
regions of martensite or austenite transformation as delineated in eqns (6) and (7).

The third expression of eqn (17) simply requires the linearization of the Green strain.
In the one-dimensional case of the truss element, the component in the direction of the
material, E, is calculated from the displacements u, v and was

(18)

where commas represent differentiation. The linearization at a known configuration, x,
with corresponding displacements u, i5, IV reads

(19)

In view of the finite element formulation, this equation can be written in vector notation
as

(20)

defining the deformation gradient F at the known configuration, x, and the displacement
gradient, grad u, by

{

I +u.x} {U,x}
F= :x ' gradu= :x'

,x .x

(21)

Returning to (17), consider first the transformation of martensite to austenite, where the
relationship between stress and the martensite fraction is given by eqns (7a)-(7c). In this
case the derivative in the second term in (17) can be written as



Shape memory alloys 3269

Solving further and isolating the directional derivative of S, one finds

(23)

where S is the value of the function S at x and in general for subsequent expressions the
shorthand notation of an overbar is used to represent the value of the variable at x. In the
first term in (17), the derivative may be expressed again as a derivative of the martensite
fraction

d d
de {D(e(x+eu»)} 1.=0 = de {D.+(Dm-D.)e(x+eu)}I.=o

= (Dm-Da);o :e {cos [aA(T-As - ~)J+l}\.=o· (24)

And using the same procedure as applied to the first term produces

Returning to (17) and collecting terms from eqns (20), (23) and (25), the entire expression
may be written for the case of transformation to austenite as

Utilizing the recursive relationship apparent in this expression, rearranging and solving,
one obtains a closed form expression for the linearized shape memory alloy constitutive
law in the case of transformation ofmartensite to austenite as desired:

(27)

where HI and H 2 are defined as
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(28)

Similarly, for the case of transformation to detwinned martensite for temperatures greater
than martensite start, eqns (6a) and (6b) can be used in conjunction with eqn (17) to obtain

(29)

where H 3 , H 4 and H s are defined as

(30)
2

- l" (~TO ) l-~so
H 4 = (E-eLi;s)(Dm-Da) 1- l-~so -2-'

~so
H s =

And finally, for the case of transformation to detwinned martensite for temperatures less
than martensite start, eqns (6c)-(6e) can be used together with eqn (17) to obtain

(31)

where H 4 and H s are the same expressions as above and H 6 is given by

n . [n - ]H 6 = cr cr Sin. or cr (S-Un .
Us - Ur Us - Ur

(32)

Note that the equations generated for the derivative of the constitutive relation in each of
the three different transformation cases differ from the traditional elasticity result only by
the preceding multiplicative term involving the Hi variables (i = 1, ... ,6). The Hi variables
themselves are fortuitously functions only of material constants and the value of stress at
X, which is known for each iteration.

Finite element formulation
For the numerical solution of eqn (12) with the incorporated linearized second Piola­

Kirchhoff stress [eqns (27), (29) or (3l)J the finite element method is used. For two noded
truss elements, the displacement field is calculated from the nodal displacements by the well
known equations

2 2 2

U= L NkUh V= L NkVb W= L NkWb
k= 1 k= 1 k= 1

(33)

where N k are linear shape functions and Uk> Vb Wk represent the nodal displacement at node
k. The displacement gradient defined in eqn (21) in vector notation is now expressed via
the matrix [B] which contains the derivatives of the shape functions
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Vz
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(34)

Equations (12) and (13) and one of the equations (27), (29) or (31) are combined and cast
into a notation appropriate to form the nonlinear element stiffness matrix for shape memory
alloy material behavior

(35)

where A and I are the cross-sectional area and the length of the truss member, F is defined
byeqn (21) and H represents the multiplicative factor dependent upon the Hi variables for
each of the three transformation cases delineated in eqns (27), (29) and (31). For the case
of martensite to austenite conversion, for example, (35) becomes

(36)

The other two cases for transformation to detwinned martensite are identical to (36) with
the substitution of the corresponding multiplicative fraction containing the Hi variables.
Note that the formulation in eqn (35) differs from the standard finite element formulation
for nonlinear truss members only by this H factor. It should be emphasized that the H
factor preserves quadratic convergence in a solution algorithm based on Newton's method
and that eqn (35) represents the exact tangent modulus of the underlying problem.

In the following analyses presented, the Finite Element Analysis Program (FEAP),
developed originally by Taylor (Taylor, 1982; Zienkiewicz and Taylor, 1989) was chosen
for use in this study because of its segmented structure, which allows relatively easy
modification of the subroutines without requiring interdependent changes scattered
throughout the entire program. In order to address shape memory alloy problems, the
code's element subroutine was revised to calculate a nonlinear elasticity truss element, as
developed in the previous subsection. At each iteration of the nonlinear analysis, the
prediction for the Green strain from the previous step, E, was utilized to calculate the
corresponding value of S. Due to the coupled nature of the SMA constitutive equations,
this task was accomplished by the addition of an iterative subroutine which separately
calculates the values and contributions of the martensite internal variables to the stress
value, given the strain and temperature from the element subroutine. Equations (5)-(7) are
entirely embedded in this additional procedure and are external to the original finite element
routines. Note that if the value of stress, S, from this subroutine and temperature are such
that the material is not in a transformation region, then the multiplicative H factor reduces
identically to I and the nonlinear elasticity formulation is left unmodified.

DISCUSSION AND APPLICATIONS

A finite element procedure was modified as indicated in the previous section and then
utilized to calculate the responses of shape memory alloy elements both alone and as parts
of other structures. There are several points for caution in the use of such a numerical
procedure for problems containing shape memory alloys. First note that the transformation
equations describing the relationship between martensite fraction, temperature and stress
and the assumption that the material parameters are linearly dependent upon ~, although



3272 L. C. BRINSON and R. LAMMERING

Table I. Material properties for the Nitinol alloy used in the examples (Dye, 1990; Liang,
1990)

Moduli, Transformation Transformation Maximum
density temperatures constants residual strain

D. = 67 X 103 MPa Mr= 9°C CM 8 MPa °C- 1
EL 0.067

DM = 26.3 X 103 MPa M, = 18Aoc CA 13.8 MPa °C- 1

e = 0.55 MPa °C- I A,=34SC qC' 100 MPa,
p = 6448.1 kg m- 3 Ar= 49°C O';r 170 MPa

generally accurate in nature for a wide variety of shape memory alloys, might need modi­
fication to obtain the most accurate results with some particular alloy. In this case, the
procedure outlined in this paper and previously (Brinson, 1993) would need to be followed
to modify the governing equations of the material system and for the numerical procedure.
However, for most alloys and applications, careful testing to obtain the variety of material
parameters should be sufficient to characterize the material for use with the equations
developed here. The most crucial parameters are the ones appearing in the critical trans­
formation stress curves.

It should also be noted that the examples given here utilize existing experimental data
on noncycled specimens. For most shape memory alloys the appearance of the curves in
Fig. 2 and likewise the material parameters change with repeated cyclic loading of the
material, stabilizing after as few as 20-30 cycles. In general, the transformation region itself
becomes very narrow as the specimen is essentially "trained" to perform a particular
transformation repeatedly. However, in many cases, if a cycled specimen is heated stress­
free well above the A r temperature and retested, then the behavior returns to that of an
uncycled specimen. Unfortunately, to date there is no consistent data or mathematical
description to portray the transition between uncycled and cyclic behavior. Consequently,
the data for either cycled or uncyded specimens must be chosen as is most appropriate to
the application being modeled. As an added note on the critical transformation stresses,
there is evidence that the precise path of the stress-strain hysteresis evolves under partial
loading and unloading situations (partial transformations) as a function of return points.
Although the character of the hysteresis and magnitudes of the stresses and strains achieved
remains the same as described by eqns (6) and (7), if the exact path is of importance in a
particular application, additional expressions such as those under investigation by Ortin
(1991) should be employed in conjunction with the expressions given here.

In the finite element implementation itself, one must be certain that the reference state,
or initial conditions of the material (So, Eo, eo, eso, To), are sensible-that they represent a
possible state of existence for the shape memory alloy. If this is not the case, the numerics
will either be unable to converge on a solution or will yield misleading results.

Abiding by the preceding requirements and caveats, the finite element procedure
developed for study of shape memory alloy behavior presents us with a very powerful tool
for investigating current and potential applications which utilize the unique capabilities of
SMAs to produce large strains or stresses under temperature change. In the following,
several test cases will be examined: first, the one-dimensional behavior of a SMA material
alone, followed by two successively more complex applications. The material properties for
the shape memory alloy in the following examples are taken from data given by Dye (1990)
and Liang (1990) on a nitinol alloy (Ni 55Ti). The values for the necessary material properties
are listed in Table 1.

Simple one-dimensional SMA behavior
In order to perform the most basic test on the finite element procedure developed and

in order to present a basis for the subsequent applications of SMAs, two simple one­
dimensional tests illustrating the thermomechanical response of SMAs are performed in
this section: stress-strain behavior at various temperatures and restrained recovery.

The stress-strain responses for a wide range of temperatures are shown in Fig. 3. For
all of these curves, the initial value of the stress-induced martensite variable is clearly zero
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Fig. 3. SMA stress-strain curves calculated by the finite element procedure illustrating the pseudo­
elastic effect and the shape memory effect. ~so = 0 in all cases (A, = 34SC). Experimental data

from Liang (1990).

as indicated by lack of residual initial strain. For temperatures above M s, the initial value
of the temperature-induced martensite variable was taken to be zero and for temperatures
less than M s, the initial values of eT were proportional to temperature as indicated by eqn
(6e). With these initial conditions, only the curve for T = -lOoe is representative ofa fully
martensitic specimen before loading. At T = 15°C the material is partially martensite and
partially austenite prior to application of stress and at all higher temperatures the material
is fully austenite. The subsequent different initial values of the modulus functions are
manifested in the difference in slope ofthe linear loading portion of the stress-strain curves.
Experimental results from Liang (1990) are given for the loading curve of 500 et and the
loading and unloading curves of - lODe. The agreement between the experiment and the
model is quite good.

The stress-strain responses at temperatures less than austenite start are all indicative
of the shape memory effect: The material loads elastically, then undergoes conversion of
martensite variants and/or transformation of austenite to detwinned martensite during
the nonlinear portion of the stress-strain curve, and finally unloads elastically (with no
pseudoelastic recovery) incurring a residual strain. To complete the shape memory effect
for the curves at temperatures below As, the material temperature must be raised above the
austenite finish temperature at zero stress for the material to recover all of the residual
strain. The pseudoelastic effect is demonstrated in Fig. 3 by the curves for T = 400 e and
T = 50oe. Since the lower of these two temperatures is less than A f , there is only a partial
pseudoelastic strain recovery on unloading and the material consists of both detwinned
martensite and austenite after unloading. At T = 50oe, above Ar. the material exhibits a
complete hysteresis loop during the procedure: The material is austenite prior to loading,
transforms to detwinned martensite during loading and completes the inverse trans­
formation to austenite upon unloading.

Note that the curves in Fig. 3 are identical to the analytical results presented for these
cases elsewhere (Brinson, 1993), in which eqns (5)-(7) are used to solve directly for the
stress-strain behavior at the different temperatures. To obtain such results for SMA mech­
anical behavior, the stress history must be considered. Therefore, the finite element pro­
cedure is first applied with incremental values of load and the initial conditions of the
origin; then the values of the variables at the end of loading are taken as initial conditions
and the load is decremented.

tThe experiment for 50°C unfortunately delved into the irrecoverable plasticity range, thus the unloading
curve is not given. Other experimental works clearly show the pseudoelastic effect of unloading at T > A r and
agree very well with the results shown here.
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Fig. 4. Restrained recovery with Eo = 0.5%, ~so = 0.046, ~TO = 0, So = 128 MPa. Curves of critical
stress for transformation also shown.

In the case of restrained recovery, a material with residual strain is constrained to
maintain that deformation as the temperature is raised through As and A f • Figure 4 shows
a material with 0.5% residual strain subjected to these conditions (E = Eo = 0.005). Because
the material is restrained as the inverse transformation to austenite occurs, and the material
would recover the residual strain if unrestrained, extremely large internal stresses are
incurred. Figure 4 also shows the critical transformation stress curves for ease of compari­
son. It is clear that upon heating the internal stress increases rapidly during transformation
to austenite, after transformation is complete the stress remains essentially constant, and
as the specimen is cooled the internal stress decreases rapidly in the region of the austenite
to martensite transformation. Note that the hysteresis loop here starts and ends with a
definite value of stress; this value is the amount of stress required at T 20°C to achieve
a 0.005 strain.

It is important to note that these results agree extremely well both quantitatively and
qualitatively with experimental data on SMA materials. In the case of restrained recovery,
however, note that experimental measurements are generally performed with at least 0.01
or 0.02 residual strain (detwinned martensite), which is far too large to expect that the
material could attain 100% austenite conversion without encountering plasticity. Conse­
quently, for accurate calculation of the maximum stress achieved in restrained recovery,
experimental data on the critical plastic stress limits for SMAs must be used so that once
the plasticity region is entered, the numerical procedure halts the transformation.

8MA pipe coupling
One of the most established uses for shape memory alloys is that of connectors for

tubing and, similarly, pin and socket type connectors (Harrison and Hodgson, 1976). The
procedure in these applications is to manufacture a ring of shape memory alloy that has a
somewhat smaller inner diameter in the austenitic state than the outer diameter of the pipes
to be connected. At a temperature less than As the ring is then deformed into partially
detwinned martensite such that its inner diameter exceeds slightly that of the tubing. The
ring is placed over the pipes in this phase and then heated. As the transformation to
austenite takes place, the material attempts to recover the initial residual strain. Being
partially constrained, however, by the strength of the pipe material, the SMA ring sub­
sequently recovers only part of its residual strain and as a result builds up large internal
stresses; both of these effects together superbly seal the connection. In practice, the mar­
tensite temperatures are generally chosen to be well below the operating temperatures so
that the SMA ring is deformed and stored at very low temperatures; then when applied
quickly to connect the pipes, the seal is immediately effected as the material warms up to
the ambient temperature.
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Fig. 5. Schematic of pipes or tubing connected by a shape memory alloy ring.

In this section, two analyses are undertaken to simulate this application (Fig. 5) and
to demonstrate the accuracy of the finite element calculation with respect to analytical
results. The finite element procedure is utilized with two one-dimensional rings of truss
elements linked together at the nodes: one ring of elements is of the shape memory alloy,
the other is of the pipe material [Fig. 6(a)]. The shape memory alloy is given an initial strain
of 0.02 in the O-direction at To = 20°C (~so = Eo/ed and then the structure is heated to
various temperatures and the resulting stresses and strains calculated. The second analysis
is a two-dimensional superposition problem, considering the cross-sections of the tubing
and the SMA ring [Fig. 6(b)], which is solved analytically for the stresses and strains at the
interface and compared to the finite element results. The standard equations for elasticity
of hollow circular domains and the interface fit superposition technique as found in Timo­
shenko and Goodier (1970) are utilized here; for the ring of SMA material the constitutive
relation is of necessity modified. The assumption is made that the shape memory alloy only
has residual strain activated in the O-direction (reasonable for actual applications) and that
consequently the behavior in the radial direction is elastic in nature. With these assumptions,
the results for the stresses and strains in the radial and O-directions were calculated.

Schematics of the one-dimensional and two-dimensional domains studied are shown
in Figs 6(a) and 6(b) and the stress and strain results comparing the numerical and analytical
solutions are given in Figs 7-9. The values shown for the strain are the differences from the
original Eo value. Note that the values calculated for the radial stress in the two-dimensional
problem are several orders of magnitude smaller than the stress which develops in the 0­
direction at any temperature, thus justifying the essentially one-dimensional nature of this

Fig. 6(a). One-dimensional finite element approximation of SMA coupling for pipes.

SMA r

x

Fig. 6(b). Two-dimensional analytical approximation of SMA coupling for pipes, solved by super­
position.

SAS 30:23-6
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Fig. 7. Comparison of analytical and numerical results for the interface stresses as functions of
temperature in a pipe coupling via a SMA ring. Dpipe = 65 X 103 MPa.
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problem.t Generally, it can be assumed that a one-dimensional theory is sufficient for a
thin walled ring: Thickness of the SMA coupler less than 5% of its diameter. The results
presented here for the two-dimensional analysis are for equal thicknesses of the shape
memory ring and the two pipes together, and for a thickness/diameter ratio of 0.02 for the
SMA. If the pipe to be sealed has, for example, walls of twice the thickness of the SMA
ring, then this is identical to the effect of doubling the modulus of the pipe material in the
one-dimensional finite element analysis. Thus, using physical insight into the problem allows
a purely one-dimensional finite element study to be used effectively in examining this two­
dimensional problem.

This example was chosen to establish the accuracy of the finite element compared to
analytical results, even though in the one-dimensional case a lumped parameter model
could be used to calculate the results as well, in place of the finite element formulation. A
finite element analysis of the pipe coupling problem could also be performed using two­
dimensional shell elements for the pipe linked with truss elements for the SMA, as illustrated
for a different example in the following section. This formulation would lead to more
accurate results and yield profiles of the critical parameters throughout the cross-section of
the pipe, which could not be accomplished by a simple lumped-parameter model.

The results of the stresses at the SMA-pipe interface are shown for a variety of
strengths of the pipe material in Fig. 9, with the Young's modulus spanning from values
lower than the martensitic modulus of the SMA to values exceeding the austenitic modulus.
In the latter case, it is clear that the results are converging on the case of pure restrained­
recovery (infinite modulus for the pipe material) as one would expect. The depiction of the
critical stress curves for the SMA material itself in Fig. 9 demonstrates the location in the
transformation region at any particular point. Such a diagram could be well used to mark
off the operating temperatures of the component and the maximum stress desired at the
interface to bound the regions of interest. Then different values of initial strain and alloys
with slightly differing material parameters could be studied with the finite element procedure
to determine the optimal material for the operating constraints of the part in question.

Active frequency tuning ofa composite strip
One reason for the growing interest in shape memory alloys in recent years is due to

the fact that SMAs are candidate materials for smart structure applications. With integrated
actuators and sensors, smart, adaptive or intelligent structures allow for vibration control,
shape control, alignment precision control and damage detection (Breitbach, 1991). The
remarkable features of SMAs that make them especially suitable for active elements in
actuators are their capacity for high forces, high displacements, reliability with temperature
control and potential to create compact powerful actuators. Moreover, in contrast to
actuators based on piezoelectric or magnetostrictive materials, SMA-actuators offer the
advantage that they can exert large repeatable displacements at zero or constant load.
Although for some devices their use is limited by the low frequency (maximum 2 Hz) at
which they can be run, nevertheless SMAs can be used in many dynamic applications. One
possibility currently being researched is structures with embedded wires of shape memory
material, activated by an electrical current to vary the temperature. In this manner internal
stress states are created in the structure that influence the eigenfrequencies. Active frequency
tuning of this type can be used, for example, to avoid resonances. An investigation of this
particular application of SMAs is demonstrated by the finite element procedure in the
following example.

Figure to shows a fiber-reinforced composite strip with eight embedded SMA wires.
The material properties of the composite strip are given in Table 2, while those of the SMA
wires are taken from Table I. The structure with a total length of 1 m is clamped at both
ends. The initial conditions are a 0.5% residual strain of the SMA wires, no prestress and

tNote that although there is discrepancy between the Cauchy and Second Piola-Kirchhoff stresses utilized
for the different constitutive laws in this analysis, the effects at the strain levels achieved here are so minor as to
be negligible.
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Fig. 10. Cross-section of composite strip with embedded SMA wires in active frequency tuning
example. Diameter of wires is taken to be 0.5 mm.

temperature To = 20°C. From these values the stress-induced and temperature-induced
martensite fractions are calculated as eso = 0.075 and eTO = 0, respectively.

In the numerical experiment the first two eigenfrequencies of this structure are cal­
culated as a function oftemperature. The results are presented in Fig. 11. When the structure
is heated there is a slight decrease in the eigenfrequencies until the temperature reaches
35°C. In the range from 35°C to 75°C there is a strong increase in the eigenfrequencies after
which they slowly decrease again when the temperature exceeds 75°C. When the structure
is cooled a hysteresis loop of the eigenfrequency versus temperature curve is observed. Note
that the frequency at the end of the cooling cycle does not return to pre-loading levels; this
is due to the fact that because of the high stresses obtained during heating, upon cooling
the material first encounters the state at which that stress level and the To temperature
would produce a strain of0.005 in the shape memory alloy. As the specimen is heated again
from here, one obtains the closed hysteresis cycle. To obtain the original values of the
frequencies, the material must be unclamped and the residual stress removed from the shape
memory wires.

Since the eigenfrequencies depend strongly on the axial force of this structural system,
the behavior is explained by comparison of Fig. 4 and Fig. 11. In the case of restrained
recovery, the stress due to heating rises primarily within the temperature range 35-75°C
(the region of martensite to austenite transformation) and, therefore, the change of the
eigenfrequencies in the clamped strip reflects this behavior. The slight decrease of the
eigenfrequencies with increasing temperature from 20 to 35°C and above 75°C is explained
by the compression force exerted by the composite strip (due to constraint of the normal
thermal expansion) and cannot be compensated for by the SMA wires outside of the
transformation region. The hysteresis loop seen upon cooling is due to the shape memory
behavior for the inverse transformation to martensite as in the case of restrained recovery.
These results for the change in eigenfrequencies of a fiber-reinforced composite strip with
embedded SMA wires agree well qualitatively with experimental results on a similar system
studied by Mooi (1992). Direct comparison of numerical results is not possible due to the
lack of detailed information on the material properties in the experiments.

The numerical results were obtained by discretization of the structural system by both
SMA truss finite elements and non-linear beam elements. Linking the corresponding nodes
has the effect that the stiffness and mass matrices of the SMA truss elements and composite
beam elements are added. Note that in this technique only the composite strip contributes
to the bending stiffness of the system and that the axial forces of both the composite strip

Table 2. Material properties for the fiber-reinforced com­
posite used in the examples

Tension stiffness DA = 3.050 x 10- 5 N

Bending stiffness DI = 2.074 N m'

Mass per length J.I = 3.5 x 10-' kg ill - I

Thermal coefficient of expansion €X = 1.2 X 10- 6 °C- 1
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Fig. 11. Variance of eigenfrequencies of composite beam with temperature. For embedded SMA
wires EQ = 0.005.

and the SMA wires are accounted for. Using one-dimensional truss elements to represent
SMA wires in structures, many more complex situations can be analysed with the finite
element technique by the procedure described here. Such analyses will be the subject of
future papers.

CONCLUSION

Here we have developed and demonstrated a nonlinear finite element procedure for
one-dimensional shape memory alloy behavior. The constitutive law chosen for this work
is one that accurately predicts the behavior of a wide variety of SMAs and utilizes only
easily quantifiable material parameters. Due to the nature of their internal crystalline
transformations which accommodate extremely large reversible strains, shape memory
alloys are often best utilized in components that are subject to or activate mechanical forces
restricted to one dimension. Consequently the finite element equations were developed for
a one-dimensional truss system.

The constitutive equations for SMA behavior were encapsulated into an iterative
subroutine external to a nonlinear elasticity element routine. The SMA constitutive law is
of such a form that its linearization for use in the Newton's method finite element solution
resulted incontained factors clearly separable in the elasticity formulation. One consequence
of this direct implementation is that in the eventual case of modification of the SMA
constitutive law to deal with unusual shape memory behavior, necessary changes to the
external SMA subroutine and the derivative factors can be made relatively easily and
quickly. Considerations that would necessitate modifi~ation of the basic SMA constitutive
relations would be the use of a shape memory material with more complex functionality of
the material parameters with the independent variables than is presented here.

The finite element procedure for shape memory alloy truss elements provides a powerful
tool to study SMA components in various applications, as illustrated by several examples
in this paper. The one-dimensional functionality ofa SMA component can be studied alone,
subject to boundary conditions imposed by the system, or entire composite systems can be
studied. In the analysis of composite systems, either the entire system can be reduced to an
equivalent one-dimensional problem or, more importantly, the SMA components can be
represented by truss elements linked to the two-dimensional structure in the finite element
analysis.

With an eye toward future developments in this area, careful experimental char­
acterization ofshape memory alloy behavior in two dimensions subject to multiaxialloading
and subsequent development ofan accurate multi-dimensional constitutive law would allow
even more precise numerical studies of current SMA devices and perhaps give insight into
new applications in which SMAs could be useful even if not utilized in an entirely one-
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dimensional manner. Also, the finite element procedure itself, as it stands now, could benefit
from the addition of heat transfer effects to the derivation technique in order to consider
an even wider variety of applications.
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